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Abstract. Independent Component Analysis (ICA) designed for complete bases is used in a variety of

applications with great success, despite the often questionable assumption of having N sensors and M sources

with NQM. In this article, we assume a source model with more sources than sensors (M>N), only L<N of which

are assumed to have a non-Gaussian distribution. We argue that this is a realistic source model for a variety of

applications, and prove that for ICA algorithms designed for complete bases (i.e., algorithms assuming N=M)

based on mutual information the mixture coefficients of the L non-Gaussian sources can be reconstructed in

spite of the overcomplete mixture model. Further, it is shown that the reconstructed temporal activity of non-

Gaussian sources is arbitrarily mixed with Gaussian sources. To obtain estimates of the temporal activity of the

non-Gaussian sources, we use the correctly reconstructed mixture coefficients in conjunction with linearly

constrained minimum variance spatial filtering. This results in estimates of the non-Gaussian sources

minimizing the variance of the interference of other sources. The approach is applied to the denoising of

Event Related Fields recorded by MEG, and it is shown that it performs superiorly to ordinary ICA.

Keywords: independent component analysis, blind source separation, overcomplete, underdetermined, EEG,

MEG, denoising, event related fields, event related potentials, beamforming

1. Introduction

Independent Component Analysis (ICA) has become

a widely used tool in a variety of signal processing

applications. By linearly decomposing measured data

into maximally independent components (ICs), the

analysis of a single source can be decoupled from all

other sources [5]. This is utilized in a variety of

applications, e.g., temporal analysis [14] and source

localization [20] of MEG/EEG data, or the analysis

of fMRI data [15] to mention just a few.

For ICA to be applicable to a given data set, four

basic requirements have to be fulfilled: (1) a linear

mixture model; (2) mutual statistical independence of

the original sources; (3) stationarity of the source

distributions; (4) at least as many sensors as sources

(ICA designed for complete bases). Frequently, it is

also stated that only one of the sources may be

Gaussian distributed. This is not a necessary require-

ment if only sources with non-Gaussian distributions

are of interest, because these can be separated in spite

of the presence of multiple Gaussian sources [10].

The requirement of having at least as many

sensors as sources has initiated development of

algorithms for overcomplete ICA, i.e., algorithms

that can deal with more sources than sensors. For



overcomplete ICA, it has been shown that the

mixture coefficients of the sources are identifiable

under certain conditions, while the sources are not

[8]. This necessitates the introduction of a regular-

ization parameter to obtain unique estimates of the

sources, e.g., by requiring the sources to be sparse

[13].

Interestingly, one of the most widely used ICA

algorithms designed for complete bases, the extend-

ed Infomax-algorithm [12], is nevertheless applied

with seemingly great success to data sets for which

more sources than sensors are to be expected, such as

in MEG/EEG data analysis.

In MEG/EEG, the continuous current distribution

inside the brain is recorded by a finite number of

sensors. This corresponds to a mapping from an

infinite to a finite dimensional space. This mapping

could only have a unique inverse or be under-

determined, as it is usually assumed in studies

applying ICA to MEG/EEG (c.f. [11]), if the

continuous current distribution inside the brain could

be partitioned into N or less sets with absolutely

identical temporal activity, where N is the number of

sensors. From a physiological point of view this is

highly unlikely, and to the best of our knowledge there

is no empirical evidence supporting this assumption.

We rather maintain that this assumption has only been

adopted as a working hypothesis to justify applying

ICA designed for complete bases to MEG/EEG data.

In this article, we investigate the performance of

ICA algorithms designed for complete bases based

on mutual information, such as the extended Info-

max-algorithm, for cases where more sources than

sensors are present. More specifically, we assume an

overcomplete mixture model, but assume fewer

sources with non-Gaussian distributions than sensors.

This source model is based on (a) the fact that only

sources with a non-Gaussian distribution can be

consistently reconstructed with algorithms based on

mutual information, and (b) the observation that for a

variety of applications typically only a few ICs can

be consistently reconstructed, i.e., independent of

initial conditions of the algorithm (see [10] and

references therein). For such data sets, which include

MEG/EEG, it can be concluded that fewer non-

Gaussian sources than sensors are present.

We prove that for this source model, ICA

algorithms designed for complete bases based on

mutual information can correctly identify the mix-

ture coefficients of the non-Gaussian sources, but

arbitrarily mix Gaussian sources into the recon-

structed temporal activity of non-Gaussian sources.

To obtain optimal estimates of the temporal source

activity of the non-Gaussian sources, we formulate

an optimization problem based on linearly con-

strained minimum variance spatial filtering

(LCMV) [19]: For each non-Gaussian distributed

source, we find a linear transformation that mini-

mizes the overall variance, under the constraint of

the product of the linear transformation with the

correctly identified mixture coefficients of the re-

spective source being unity. This leads to source

estimates of the non-Gaussian sources that minimize

the variance of the interference of all other sources.

We apply this approach to the denoising of Auditory

Event Related Fields (AEFs) recorded by MEG, and

show that it performs superiorly to ordinary ICA.

It should be pointed out that other authors

previously suggested combining Blind Source Sepa-

ration (BSS) with spatial filtering (a general over-

view of spatial filtering in the context of MEG/EEG

analysis can be found in [9]). In fact, one of the first

studies on BSS proposed to use blind identification

in the context of beamforming to address inaccura-

cies in the physical model of array manifolds [4].

More recent studies include [17], addressing ambi-

guities in convolutive source separation by geometric

beamforming, and [18], combining ICA and beam-

forming to obtain better convergence properties. All

of these studies, however, are restricted to complete

mixture models. To the best of our knowledge, this

study is the first to address ICA and beamforming in

the context of overcomplete mixture models.

The rest of the article is organized as follows. In

Section 2, we first introduce the overcomplete source

model and ICA based on mutual information,

followed by the proof that the mixture coefficients

of non-Gaussian sources are identifiable, while the

temporal activity of non-Gaussian sources is arbi-

trarily mixed with Gaussian sources. We then show

how optimal estimates of the non-Gaussian sources

can be obtained by minimizing the interference of all

other sources. In the Section 3, we apply our

approach to AEFs recorded by MEG, and compare

the results with ordinary ICA. We conclude with a

discussion of the implications of the results.
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2. Materials and Methods

2.1. Overcomplete Source Model

The overcomplete source model is given by

x ¼ As; ð1Þ

with the random variables x 2 RN, s 2 RM with

M > N. The matrix A 2 RN�M is assumed to have

full row-rank, and the sources si; i ¼ 1 . . . M are

assumed to be mutually statistically independent,

i.e.,

pðsÞ ¼
YM

i¼1

pðsiÞ: ð2Þ

Furthermore, it is assumed that si � Nð0; 1Þ; i ¼
Lþ 1 . . . M, i.e., only the first L sources are assumed

to have a non-Gaussian distribution. Without loss of

generality, all sources are assumed to have zero mean

and unit variance. Additive measurement noise is

included in this model as a special case, i.e., as

sources only projecting to one sensor. Without loss of

generality, we furthermore assume that the measure-

ments x have been sphered, i.e., that the data

covariance matrix is given by

Rx ¼ hx; xi ¼ Ahs; siAT ¼ AAT ¼ IN�N: ð3Þ

The N rows of the mixing matrix A are hence

mutually orthogonal.

2.2. Complete ICA for Overcomplete Source
Models

To reconstruct the temporal source activity s from

the measurements in the case of ICA designed for

complete bases, we search for a matrix W such that

y ¼ Wx ¼ WAs ¼ s ð4Þ

with W 2 RN�N . Obviously this problem is ill-posed

for the overcomplete mixture model, since we are

trying to find a one-to-one mapping from a M-

dimensional to a N-dimensional vectorspace with

M > N. It is thus evident, that the original M sources

cannot be separated from the N measurements.

We will now investigate the form of unmixing

matrices W as well as the reconstructed source vector

y returned by ICA algorithms designed for complete

bases based on mutual information if applied to this

ill-posed problem. For this purpose, first note that

since x is sphered, only orthogonal unmixing

matrices have to be considered [3]. The estimated

sources are thus obtained by

y ¼ Wx ð5Þ

with W 2 RN�N orthogonal. For algorithms based on

mutual information, the matrix W is found by

minimizing the mutual information between the

elements of y:

w
min

XN

i¼1

HðyiÞ � HðyÞ
( )

ð6Þ

with HðyiÞ ¼ �
R1
�1 pyi

ðuÞ logðpyi
ðuÞÞdu the differ-

ential entropy. Since W is an invertible transforma-

tion, Eq. (6) can be rewritten as

w
min

XN

i¼1

HðyiÞ � logðjWjÞ � HðxÞ
( )

ð7Þ

which reduces to

w
min

XN

i¼1

HðyiÞ
( )

ð8Þ

since W is orthogonal and HðxÞ is independent of W.

The following derivations extend the results of [1]

to the overcomplete case. Define FðWÞ :¼
PN

i¼1

HðyiÞ. The gradient of FðWÞ under the orthogonality

constraint then becomes [7]

rorthoFðWÞ ¼ rFðWÞ �WrFðWÞTW: ð9Þ

Since WWT ¼ IN�N, solutions of Eq. (9) are given by

rFðWÞWT ¼ WrFðWÞT : ð10Þ
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Note, however, that Eq. (10) is only a necessary con-

dition for a minimum of Eq. (8). Denoting hðwiÞ :¼
HðyiÞ with wi the ith row of W, Eq. (10) becomes

rhðwkÞ � wT
l ¼ rhðwlÞ � wT

k ð11Þ

for k; l ¼ 1 . . . N; k 6¼ l. With

@hðyiÞ
@wi;j

¼ �
Z1

�1

log pyi
ðuÞ þ 1

� � @pyi
ðuÞ

@wi;j
du; ð12Þ

Eq. (11) results in

Z1

�1

log pyk
ðuÞ þ 1

� �

� @pyk
ðuÞ

@wk;1
wl;1 þ . . .þ @pyk

ðuÞ
@wk;N

wl;N

� �
du

¼
Z1

�1

log pyl
ðuÞ þ 1

� �

� @pyl
ðuÞ

@wl;1
wk;1 þ . . .þ @pyl

ðuÞ
@wl;N

wk;N

� �
du ð13Þ

for k; l ¼ 1 . . . N; k 6¼ l. A sufficient condition for

Eq. (13) to hold is

@pyk
ðuÞ

@wk;1
wl;1 þ . . .þ @pyk

ðuÞ
@wk;N

wl;N ¼ 0 ð14Þ

for k; l ¼ 1 . . . N; k 6¼ l.
To simplify the analysis of Eq. (14), note that

y ¼ WAs: ð15Þ

Defining C :¼ WA 2 RN�M, we can write the ele-

ments of y as

yi ¼ ci;1s1 þ . . .þ ci;MsM; ð16Þ

with ci;j denoting the element of C in the ith row and

the jth column. The probability distribution of yi is

then given by

pyi
ðuÞ ¼ 1

ci;1
ps1

u

ci;1

� �
� . . . � 1

ci;M
psM

u

cM;1

� �
: ð17Þ

The analysis of Eq. (14) is further simplified in the

frequency domain. With ’yi
ð!Þ the characteristic

function of pyi
, Eq. (17) becomes

’yi
ð!Þ ¼ ’si

ðci;1!Þ � . . .� ’sM
ðcM;1!Þ: ð18Þ

Substituting Eq. (18) in Eq. (14) and dividing by

’si
ðci;1!Þ � . . .� ’sM

ðcM;1!Þ results in

!’0s1
ðck;1!Þcl;1

’s1
ðck;1!Þ

þ . . .þ
!’0sM

ðck;M!Þcl;M

’sM
ðck;M!Þ

¼ 0 ð19Þ

for k; l ¼ 1 . . . N; k 6¼ l. Now only if si has a

Gaussian distribution it holds that

’0si
ð�!Þ ¼ ��!’si

ð�!Þ: ð20Þ

Since the sources si; i ¼ Lþ 1 . . . M are assumed to

be Gaussian, Eq. (19) simplifies to

!’0s1
ðck;1!Þcl;1

’s1
ðck;1!Þ

þ . . .þ
!’0sL
ðck;L!Þcl;L

’sN
ðck;L!Þ

� !2ðck;Lþ1cl;Lþ1 þ . . .þ ck;Mcl;MÞ ¼ 0

ð21Þ

for k; l ¼ 1 . . . N; k 6¼ l. Note that ’0si
ðci;j!Þjci;j¼0 ¼ 0

because all sources have zero mean. Considering the

first two terms of Eq. (21), the first term is zero if

and only if in the first column of C for every pair of

elements only one of them is non-zero. This in turn

implies that only one element of each column may

be non-zero. The same holds for every up to and

including the Lth column. Considering the last term

of Eq. (21), this term is zero if the rows of C, starting

with the ðLþ 1Þth element, are mutually orthogonal.

Now note that the rows of C are mutually orthogo-

nal, since C ¼ WA and W is orthogonal and the rows

of A are mutually orthogonal. Hence, the rows of C
may only have on non-zero entry in the first L
columns. In summary, it is sufficient for Eq. (21) to

hold that C is of the form

C ¼ PN�LjQN�M�Lð Þ ð22Þ

with P 2 RN�L any permutation matrix (only one

non-zero entry in each column and row) and Q 2
RN�M�L any matrix with mutually orthogonal rows.
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We will now investigate what this implies for the

structure of the unmixing matrix W and the estimated

mixing matrix eAA ¼ W�1. Without loss of generality,

we assume that no permutation and scaling of the

sources takes place, i.e.,

C ¼ WA ¼ IN�LjQN�M�Lð Þ ð23Þ

with IN�L having unit entries for the first L diagonal

elements and zero entries otherwise. With wi the ith

row of W and aj the jth column of A, this implies that

wiaj ¼ 0 ð24Þ

for i ¼ 1 . . . N; j ¼ 1 . . . L and i 6¼ j, and

wiaj 6¼ 0 ð25Þ

otherwise. This means that the ith row of W is

orthogonal to all column vectors of A representing

the non-Gaussian sources except the ith column of A,

but not orthogonal to the column vectors of A
representing the Gaussian sources. For i � L, the ith

row of W thus lies in a subspace that is orthogonal to

the subspace spanned by all non-Gaussian sources

except the ith non-Gaussian source.

Now consider the estimated mixing matrix
eAA ¼ W�1. With

W eAA ¼ IN�N; ð26Þ

by construction, we see that the jth column of eAA is

orthogonal to all except the jth row of W. Conse-

quently, the jth column of eAA lies in a subspace that is

orthogonal to all except the jth row of W. Now note

that as discussed above for j ¼ 1 . . . L, the rows wi of

W with i ¼ 1 . . . N; i 6¼ j span the subspace of all

sources except the jth non-Gaussian source. Conse-

quently, the jth column of eAA is linearly dependent on

the jth column of A for j ¼ 1 . . . L, and thus correctly

identifies the mixing coefficients of the original non-

Gaussian source up to multiplication by a constant.

We can summarize the results of this section as

follows. For the overcomplete mixing model with N
sensors, M sources out of which only L have a non-

Gaussian distribution, and M > N > L, any unmixing

matrix W that fulfills WA ¼ C with C in the form of

Eq. (22) is a stationary point of the minimization

problem (8). The reconstructed sources are then given

by y ¼ Wx ¼ WAs ¼ Cs. Thus, algorithms for com-

plete ICA based on mutual information are capable of

separating the non-Gaussian sources, but Gaussian

sources can be arbitrarily mixed into the reconstructed

non-Gaussian sources. However, even if the non-

Gaussian sources are not separated from the Gaussian

sources, the estimated mixing matrix eAA correctly

reconstructs the columns of the original mixing matrix

corresponding to the non-Gaussian sources up to

permutation and scaling. In the next section, we will

show how the correctly identified columns of the

mixing matrix corresponding to the non-Gaussian

sources can be used to estimate the non-Gaussian

sources in an optimal manner.

2.3. Source Estimation by Linearly Constrained
Minimum Variance Filtering

As we have seen in the previous section, for the

assumed source model ICA algorithms based on

mutual information, such as the extended Infomax-

algorithm, arbitrarily mix Gaussian sources into the

reconstructed temporal activity of non-Gaussian

sources. The correct identification of the mixture

coefficients of the sources with non-Gaussian dis-

tributions, however, enables an optimal estimation of

the temporal activity of these sources. In this section,

we show how the temporal activity of the non-

Gaussian sources can be estimated by minimizing

the variance of the interference of all other sources.

Consider again the overcomplete mixture model

given in Eq. (1), but this time assume that the

columns ai; i ¼ 1 . . . L, corresponding to the mixture

coefficients of the non-Gaussian sources, to be

known. To estimate the temporal activity essi of the

ith source, we wish to find a linear transformation vi

that passes all activity originating from the ith source,

while attenuating all other sources:

essi ¼ vT
i x: ð27Þ

If we choose to minimize the variance of all except

the ith source, vi can be found by solving the fol-

lowing optimization problem:

vi

min ess 2
i

� 	
s:t: vT

i ai ¼ 1; ð28Þ
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which can be rewritten as

vi

min vT
i Rxvi

� 	
s:t: vT

i ai ¼ 1; ð29Þ

with Rx the (estimated) data covariance matrix. The

solution to this optimization problem is given in

[19]:

vi ¼ ðaT
i R�1

x aiÞ�1aT
i R�1

x : ð30Þ

If ai corresponds to the mixing coefficients of a non-

Gaussian source, the resulting essi is an estimate of the

original non-Gaussian source with minimized vari-

ance of the interference of all other sources. Note,

however, that this also implies that the estimated

source activity is not statistically independent of all

other non-Gaussian sources anymore: statistical

independence is traded for minimization of the

variance of interference of all other sources. If ai

corresponds to a source with Gaussian distribution,

the estimated essi is meaningless, in the sense that the

reconstructed activity corresponds to an arbitrary

mixture of original sources with Gaussian distribution.

Whether ai corresponds to a source with non-

Gaussian or Gaussian distribution cannot be deter-

mined from the mixture coefficients, but has to be

deduced from the estimated temporal source activity

essi. Also note that in the derivation of Eq. (30) the

original sources are assumed to be uncorrelated,

which is fulfilled for the source model considered

here due to the mutual statistical independence

assumption.

3. Results

To evaluate the efficacy of the approach proposed in

Section 2, we apply it to the denoising of MEG data

by ICA in this section, and compare its performance

with ordinary ICA. Data denoising by ICA is based

on the assumption that only a small number of ICs

reconstructed from a given data set are relevant for

the considered experimental setup, i.e., belong to the

signal subspace, while all other ICs constitute noise.

Only the ICs belonging to the signal subspace are

then reprojected onto the observation space, resulting

in a rank-reduced signal with improved signal-to-

noise ratio (SNR). It should be noted that the iden-

tification of ICs relevant for a given experimental

setup is not trivial, and hence mostly done manually.

In the context of the source model considered here,

we assume that only the L non-Gaussian sources

belong to the signal subspace. We hence consider the

deviation from Gaussianity of the reconstructed

sources as a criterion for the identification of relevant

ICs.

As MEG data we chose Event Related Fields

(ERFs). ERFs typically have a very low SNR, and

are difficult to detect in single trial data. For this

reason numerous trials are recorded, and the ERF is

estimated by taking the ensemble average of all

trials. Based on the assumption that only the ERF

component of the MEG is invariant in every trial,

this results in an unbiased estimator of the ERF

(termed the grand average ERF). In complex

experimental setups, or if subjects with a short

attention span such as small children are under

investigation, the recording of numerous trials is

not feasible. The goal of ERF denoising by ICA is

then to reconstruct the grand average ERF from only

a small number of trials. This application is well

suited for evaluating the approach presented in

Section 2, because a data set can be used for which

the grand average ERF actually is available. This

allows an objective evaluation of the obtained

denoising results. Furthermore, as we have argued

in the introduction, the overcomplete source model

(1) is a realistic assumption for MEG data sets.

The test data set consists of Auditory Evoked

Fields (AEFs), recorded during an auditory oddball

task at the Biomagnetic Imaging Laboratory of the

University of California, San Francisco. Auditory

stimuli were applied to the left ear, while MEG was

recorded at a sampling rate of 4 kHz with N ¼ 132

sensors covering the right hemisphere. A total of 250

trials were recorded, with each trial lasting from

�275 to 275 ms and the stimulus being applied at 0

ms (see [16] for a detailed description of the

recording procedure). Out of the total number of

250 trials, ten trials were chosen randomly for

estimation of the raw average ERF. The grand

average y* was computed by taking the average

time course of all 250 trials, and filtering the

resulting average sequentially with a low- and high-

pass filter with cut-off frequencies 2 Hz and 16 Hz ,

respectively, (for all temporal filtering procedures in

this article a third order Butterworth filter was used).

The resulting temporal activity at all channels is

shown in Fig. 1a. The same temporal filtering
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procedure was applied to the average of the

randomly chosen ten trials, resulting in the temporal

activity yraw shown in Fig. 1b. Note that only the

post-stimulus period is shown in both figures. For a

quantitative comparison of the data sets, the SNR

was defined as

SNRðbyyÞ :¼ 10 log10

1

N

XN

i¼1

PT

t¼1

y�i t½ �2

PT

t¼1

y�i t½ � � byyi t½ �
� �2

0

BBB@

1

CCCAðdBÞ;

ð31Þ

with samples t ¼ 1 . . . T corresponding to the post-

stimulus period of the data. Each data sets was first

normalized to the maximum value of all channels

before computing the SNR. This resulted in a SNR

of �0:09 dB for the data set yraw.

To evaluate the denoising capabilities of ICA, the

extended Infomax-algorithm as implemented in

EEGLab [6] was applied to the concatenated ten

trials that were randomly chosen as test data (from

here on referred to as the data vector x), resulting in

estimated source topographies baai and temporal

source estimates bssi with i ¼ 1; . . . ;N. Four different

evaluation schemes were then investigated:

1. Ordinary ICA The reconstructed sources bssi are

sorted in descending order according to the

variance of the original data explained by each

source. Only the first L sources with the highest

explained variance are reprojected onto the

observation space,

bxx1 ¼
XL

i¼1

baaibssi: ð32Þ

2. ICA with LCMV spatial filtering The temporal

source activity of each source is estimated using

the LCMV spatial filtering approach (27), (28),

(29), (30), and the resulting source estimates are

again sorted in descending order according to the

amount of variance of the original data explained

by each source. The first L sources explaining the

highest amount of variance are reprojected onto

the observation space, resulting in

bxx2 ¼
XL

i¼1

baaiðbaaT
i R�1

x baaiÞ�1baaT
i R�1

x x: ð33Þ

Note that in this and the fourth evaluation scheme

diagonal loading is used to obtain numerically stable

estimates of the inverse of the covariance matrix Rx.

3. Ordinary ICA with identification of relevant
non-Gaussian sources The sources are recon-

structed with ordinary ICA, but not sorted in des-

cending order according to the amount of

variance explained by each IC. Instead, the

msms
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Figure 1. Grand average ERF y� (a) and ERF average of ten randomly chosen trials yraw (b).
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deviation from Gaussianity of each source bssi is

estimated in multiple stages. First, the average

temporal activity of each source across the ten

trials is computed. Then, the probability distribu-

tion function (pdf) of each averaged source is

estimated for the post-stimulus period using a

non-parametric kernel approach (c.f. [2]). A

Gaussian kernel is used, which is optimal for

Gaussian distributions. Then, the Kullback-Lei-

bler distance of the estimated pdf to a Gaussian

distribution with equal variance is calculated by

numerical integration. Finally, the sources are

sorted from highest to lowest Kullback-Leibler

distance, i.e., from least to most Gaussian. The

data set bx3 is then calculated in the same way as

in Eq. (32), but by reprojecting the L most non-

Gaussian sources.

4. ICA with LCMV spatial filtering and identification
of relevant non-Gaussian sources The temporal

source activity of each source is again estimated

0
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Figure 2. SNR of the evaluation schemes 1–4.

Table 1. Maximum SNR for each of the four denoising schemes.

Evaluation scheme 1 2 3 4

Maximum SNR 3:75 dB 3:48 dB 3:32 dB 9:29 dB

Lmax 30 61 51 6
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using Eqs. (27), (28), (29), (30). The estimated

sources are sorted in descending order according

to their deviation from Gaussianity as for evalu-

ation scheme three. The data set bxx 4 is then

calculated in the same way as in Eq. (33), but

by reprojecting the L most non-Gaussian sources.

The denoised data sets byy j; j ¼ 1; . . . ; 4 are calculat-

ed from the data sets bxx j by taking the average across

the ten trials of xj, applying the same temporal

filtering procedure as for the grand average data set,

and normalizing to the maximum value across all

channels of each byy j. Note that determining the

parameter L, corresponding to the dimension of the

signal subspace, is a non-trivial issue related to

model identification. This is beyond the scope of this

article. The resulting SNRs for all four schemes

applied to the ten randomly chosen trials are shown

in Fig. 2 in dependence on the choice of L. The

maximum SNR achieved for each evaluation scheme

is summarized in Table 1, with Fig. 3 showing the

corresponding time series.

As can be seen from Table 1, the best SNR of 9:29

dB is achieved for ICA with LCMV spatial filtering

and sorting of the estimated sources by their

deviation from Gaussianity. The SNRs for the other

three evaluation schemes are roughly equal at about

3:5 dB. Note that the best SNR for evaluation
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Figure 3. Denoised ERFs with optimal L for evaluation schemes 1–4.
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scheme 4 is obtained for L ¼ 6, while the optimal

SNR for the other evaluation schemes is obtained for

much higher dimensions of the signal subspace

(Fig. 2). As it can be expected from the SNRs, the

temporal activity at the recording channels for the

optimum SNR of each evaluation scheme differs

significantly (Fig. 3). While the 4th evaluation

scheme correctly reconstructs all major peaks of the

grand average ERF (see Fig. 1), for the other three

evaluation schemes only the major peak around 100 ms

is clearly discernible.

4. Discussion

Summarizing the experimental results, it was shown

that ICA with estimation of the temporal source

activity by linearly constrained minimum variance

spatial filtering and identification of relevant sources

by deviation from Gaussianity is superior to ordinary

ICA. This is in agreement with the theoretical results

presented in the Section 2, proving that ICA

designed for complete bases based on mutual

information can correctly identify the mixture coef-

ficients of the non-Gaussian sources, but arbitrarily

mixes reconstructed non-Gaussian with Gaussian

sources. The experimental results furthermore sup-

port the argument that the overcomplete source

model with less non-Gaussian sources than sensors

is a realistic assumption for MEG data. We thus

conclude that great care should be taken in the

interpretation of temporal activity of sources recon-

structed by ordinary ICA if applied to data sets for

which the overcomplete source model presented here

is a realistic assumption, such as MEG or EEG data.

In these cases, the reconstructed temporal activity of

a source can be arbitrarily mixed with Gaussian

sources. The experimental results show that for non-

Gaussian distributed sources, estimation of the

temporal source activity by linearly constrained

minimum variance spatial filtering results in im-

proved estimates of the original temporal source

activity.
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